
Exercices chapitre 9 – série 12- Enoncés

Exercice I

On considère le circuit ci-dessous dans lequel le transistor MOS a les paramètres suivant: $\beta = 0.01$, $V_T = 1$ volt

Si on applique une tension d'entrée V_{in} de 3 volts :

1) Quelle doit-être la valeur maximale de la résistance R si on souhaite que le transistor reste en mode saturé ?

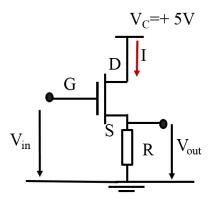
Réponse: 150 Ohms

- 2) Comment variera le courant si on divise par deux la valeur de cette résistance R. Quelle sera alors la valeur de V_{out} ?
- 3) Même question si maintenant on multiplie par deux la valeur de R.

Quelle sera le courant I et la tension Vout?

Réponse : 13.7 mA et 4.12 V

4) Exprimez le gain en tension $A_V = \frac{dV_{out}}{dV_{in}}$ lorsque le transistor est en mode linéaire.


Réponse : $A_V = \frac{-R \beta}{1+R \beta (V_{GS}-V_{T0}-V_{DS})} V_{DS}$

5) Si on suppose V_{in} fixé. Pour quelle condition ce gain est maximal? Pour quelle condition ce gain est minimal? Commentez le signe de A_V.

Exercice II.

On considère le circuit suivant dans lequel le transistor MOS a les paramètres suivant:

$$\beta = 0.01$$
 , $V_T \! = \! 1$ volt

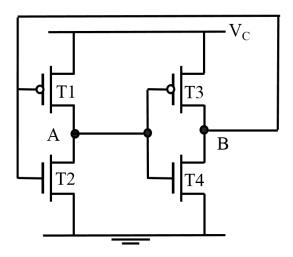
La résistance R est de 150 Ω

De plus, on suppose $V_{\text{in}} \leq V_{\text{C}}$

- 1) Exprimez les quantités (V_{GS}-V_{T0}) et V_{DS}.
- 2) Quelle est la condition pour que le transistor soit en saturation?.
- 3) Que vaut le courant et V_{out} pour $V_{in} = 3$ Volts

Commentez vis-à-vis de l'exercice 1.

Réponse : I = 6 mA, et $V_{out} = 0.9 \text{ V}$


Exercice III

On considère le circuit suivant:

- 1) Identifiez la nature des transistors, leurs sources, drains et grilles.
- 2) Quelles valeurs peuvent prendre les nœuds A et B?

Si on considère l'état du système défini par la valeur du potentiel au nœud B, quels sont les états possibles ?

3) Quelle fonction permet de faire ce circuit?

